煤炭工程 ›› 2018, Vol. 50 ›› Issue (4): 110-114.doi: 10.11799/ce201804028

• 研究探讨 • 上一篇    下一篇

一种基于动态建模的磨煤机故障诊断方法

王天堃   

  1. 神华集团有限责任公司
  • 收稿日期:2017-10-31 修回日期:2018-01-18 出版日期:2018-04-20 发布日期:2018-06-14
  • 通讯作者: 王天堃 E-mail:20022936@shenhua.cc

A Fault Diagnosis Method for Coal Mill Based on Dynamic Modeling

  • Received:2017-10-31 Revised:2018-01-18 Online:2018-04-20 Published:2018-06-14

摘要: 针对火电厂磨煤机故障诊断问题,通过采用系统运行特性的动态数学建模的方法来逼近真实磨煤机系统,并利用真实运行数据对模型参数进行辨识。结合典型制粉系统故障类型,研究其不同故障程度下特征参数的变化规律来完善故障知识库,从而有利于对磨煤机运行故障的快速和精确诊断。同时,根据不同故障严重程度的特征分析,针对每类故障的故障样本数据进行离线训练,提出了一种通过故障征兆的计算和缩放因子搜索实现故障的在线辨识方法,获取更为快速和可靠的故障诊断结果。最终,结合山西河曲电厂660-MW机组的双进双出BBD3854型磨煤机验证了将所提出的故障诊断方法的有效性。

关键词: 故障诊断, LS-SVM, 缩放因子, 制粉系统

Abstract: Taking the BBD3854 coal mill of 660-MW unit in Hequ power plant in Shanxi as the research object,the dynamic mathematical model is built to approximate the real system, and the model is verified by real data. In order to enrich the fault knowledge base and research on the fault diagnosis,the real fault of the pulverizing system is simulated, and the variation rule of the characteristic parameters under different faults is excavated.A new method of fault diagnosis based on the fault scaling factor search technique is proposed by summarizing the similarity rules of different severity faults.This method only needs to carry on the off-line training to each kind of fault in the typical fault sample,this makes the fault diagnosis and identification faster and more stable.The effectiveness of the proposed method is verified by an example of an auxiliary coal pulverizer.

中图分类号: